skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lopez, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ALMA-IMF Large Program provides multi-tracer observations of 15 Galactic massive protoclusters at a matched sensitivity and spatial resolution. We focus on the dense gas kinematics of the G353.41 protocluster traced by N2H+(1−0), with a spatial resolution of ~0.02 pc. G353.41, at a distance of ~2kpc, is embedded in a larger-scale (~8 pc) filament and has a mass of ~2.5 × 103Mwithin 1.3 × 1.3 pc2. We extracted the N2H+(1−0) isolated line component and decomposed it by fitting up to three Gaussian velocity components. This allows us to identify velocity structures that are either muddled or impossible to identify in the traditional position-velocity diagram. We identify multiple velocity gradients on large (~1 pc) and small scales (~0.2pc). We find good agreement between the N2H+velocities and the previously reported DCN core velocities, suggesting that cores are kinematically coupled with the dense gas in which they form. We have measured nine converging “V-shaped” velocity gradients (VGs) (~20 km s−1pc−1) that are well resolved (sizes ~0.1 pc), mostly located in filaments, which are sometimes associated with cores near their point of convergence. We interpret these V-shapes as inflowing gas feeding the regions near cores (the immediate sites of star formation). We estimated the timescales associated with V-shapes as VG−1, and we interpret them as inflow timescales. The average inflow timescale is ~67 kyr, or about twice the free-fall time of cores in the same area (~33 kyr) but substantially shorter than protostar lifetime estimates (~0.5 Myr). We derived mass accretion rates in the range of (0.35–8.77) × 10−4Myr−1. This feeding might lead to further filament collapse and the formation of new cores. We suggest that the protocluster is collapsing on large scales, but the velocity signature of collapse is slow compared to pure free-fall. Thus, these data are consistent with a comparatively slow global protocluster contraction under gravity, and faster core formation within, suggesting the formation of multiple generations of stars over the protocluster’s lifetime. 
    more » « less
  2. The stellar initial mass function (IMF) is critical to our understanding of star formation and the effects of young stars on their environment. On large scales, it enables us to use tracers such as UV or Hα emission to estimate the star formation rate of a system and interpret unresolved star clusters across the Universe. So far, there is little firm evidence of large-scale variations of the IMF, which is thus generally considered “universal”. Stars form from cores, and it is now possible to estimate core masses and compare the core mass function (CMF) with the IMF, which it presumably produces. The goal of the ALMA-IMF large programme is to measure the core mass function at high linear resolution (2700 au) in 15 typical Milky Way protoclusters spanning a mass range of 2.5 × 103to 32.7 × 103M. In this work, we used two different core extraction algorithms to extract ≈680 gravitationally bound cores from these 15 protoclusters. We adopted a per core temperature using the temperature estimate from the point-process mapping Bayesian method (PPMAP). A power-law fit to the CMF of the sub-sample of cores above the 1.64Mcompleteness limit (330 cores) through the maximum likelihood estimate technique yields a slope of 1.97 ± 0.06, which is significantly flatter than the 2.35 Salpeter slope. Assuming a self-similar mapping between the CMF and the IMF, this result implies that these 15 high-mass protoclusters will generate atypical IMFs. This sample currently is the largest sample that was produced and analysed self-consistently, derived at matched physical resolution, with per core temperature estimates, and cores as massive as 150M. We provide both the raw source extraction catalogues and the catalogues listing the source size, temperature, mass, spectral indices, and so on in the 15 protoclusters. 
    more » « less
  3. Herein, we tested the ability of UNC-33L to rescue dauer formation, lifespan, and locomotion defects of unc-33(mn407) mutants. Results show that the presence of UNC-33L does not rescue the defective dauer phenotype in unc-33(mn407) mutants. However, UNC-33L significantly rescued premature death and uncoordinated locomotion in young unc-33(mn407) adults. The degree of UNC-33L-mediated rescue was less noticeable as the nematodes aged, denoting that both age and the presence of UNC-33L interact in the production of the phenotypes. 
    more » « less
  4. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1. 
    more » « less
  5. Gresalfi, M. & (Ed.)
    I've already deposited this and this record is a duplicate. I apparently can't move on with the project report unless I submit a duplicate for some reason. 
    more » « less
  6. Gresalfi, M. and (Ed.)
    The ability to interpret, evaluate, and make data-based decisions is critical in the age of big data. Normative scripts around the use of data position them as a privileged epistemic form conferring authority through objectivity that can serve as a lever for effecting change. However, humans and materials shape how data are created and used which can reinscribe existing power relations in society at large (Van Wart, Lanouette & Parikh, 2020). Thus, research is needed on how learners can be supported to engage in critical data literacies through sociocultural perspectives. As a field intimately concerned with data-based reasoning, social justice, and design, the learning sciences is well-positioned to contribute to such an effort. This symposium brings together scholars to present theoretical frameworks and empirical studies on the design of learning spaces for critical data literacies. This collection supports a larger discussion around existing tensions, additional design considerations, and new methodologies. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)